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Predicting shapes of polymer-chain-anchored fluid vesicles
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We propose a general method for predicting shapes of fluid vesicles with anchored polymers. The method
combines the Helfrich curvature elasticity theory for fluid membranes and the self-consistent field theory for
polymers, to determine stable and metastable shapes of the vesicles as well as the segment distributions of the
anchored chains. We illustrate the method by investigating the shape change of a fluid vesicle induced by a
single anchoring polymer chain. Extension to more complicated systems, such as vesicles with multiple
anchored chains, block copolymers, or semiflexible chains, is straightforward.
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Lipid bilayers that form the walls of living cells are often theory has been extensively used to explore the shape
“decorated” by a large number of macromolecules, such ashanges of closed membranes under various conditions. It
proteins, DNA, and polymers. For example, a polymer brusthas successfully predicted the diskocyte shape of the red
calledglycocalyxis grafted to the plasma membrane of ani- blood cell[10]. For polymer systems, SCFT is the method of
mal cells through coupling with the membrane-spanning prochoice for numerical studies of equilibrium phases and has
teins [1]. These bilayers usually are impenetrable by mosyjielded quantitative agreement with experimeftd,12].
biomacromolecules in cytoplasm. As a very much simplifiedThe combined Helfrich-SCFT theory allows the simulta-
model of biological cells, polymer chains anchored to fluidneous prediction of the shapes of vesicles with anchored
vesicles have recently attracted experimental investigatiopolymer chains as well as the segment distributions of these
[2,3]. Complex shape changes, such as budding, pearlinghains.
and coiling of the vesicles, can be induced even when a very We consider a polymer-vesicle system in solvent. We as-
small amount of polymer chains are anchored and/or adsume that the vesicle membrane is infinitively thin but not
sorbed onto the membranes. These subtle shape changespehetrable by the polymer chains that are outside of the
vesicles with anchored polymers have also drawn theoreticalesicle. The number of solvent moleculesanand that of
attention [4—6]. Analytical calculations and Monte Carlo the polymer chains |$1 with each chain ofN segments.
simulations reveal that the anchored chains can induce locglhe partition function of such a system can be written as
inhomogeneities of the bending rigidity and spontaneous cur-
vature of the membrangt,5]. Adsorption of polymers an-
chored to membranes was also investigated and for strong E=
adsorption a decrease of the entropically induced membrane

f ﬁDRiS ﬁ[DRip(T)e_BHB[RiP(T)]]
i=1 i=1

curvature was predictdd]. Furthermore, the anchored poly- 0

mers with adhesive segments were thought to act as adhesive X f DRy(u,v)e AHuRm(U0)lg=AHint
stickers between membranes, a mechanism that underlies the

adhesion of biomembrané8]; however, repeller molecules <[] Spe(r) + pelr) = po]

anchored to the membranes, such as polyethylene glycol lip-
ids, can induce purely repulsive interaction potentj8ls
Up to now, theoretical studies have accounted for the al- Xé(f drp (r)), (1)
tering of the spontaneous curvature and bending rigidity of e Vin[Ro(U0)] P
an infinitively large planar membrane. For vesicles, however,
due to the closure of the membranes, a different model fowhere 8=1/kgT, and /DR denotes functional integration
closed vesicles with anchored polymers, which has more biosver configurations of the solvents, polymers, and fluid
logical relevance, is needed. In this paper, we propose amembraneR, and R' (7) denote the spatial positions of the
approach that combines the Helfrich curvature elasticitysolventi and the segmen{- of the ith chain, respectively.
theory for fluid membranes and the self-consistent fieldR (u,v) denotes the spatial position of the membrane and
theory(SCFT) for polymers to satisfy this need. The Helfrich u,v are curvilinear coordinates in the membrane surface.
€ Vin[Ry(u,v)] or r € Vo { Ry(u,v)] denotes that is inside
or outside the volume enclosed by the vesicle membrane,
* Author to whom correspondence should be addressed. Electroni@spectively. The first function ensures the incompressibil-
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:Ei“:sl_&(r—R'S) and bp(r):_E{‘glfg‘Pdr _6[r—R'p(_r)], and the in- ws= xpp+ &, (4)

teraction Hamiltonian includes interactions between the

polymer segments and solvent molecules and the membrane, n. (N

e, Hin=VpstVom Which can be written aspV pp=2| dray(r, Dayr,7), (5)

=xJdrpgNpy(r)  and  BVyn=n$dApy{r e AlRy(u,v)]}, Qoo

where y and » are the interaction parameters of polymer-

solvent and polymer-membrane pairs, respectively, and po= ng o os 6)
S 1l

A[R(u,v)] represents the surface of the closed vesicle mem-
brane. The Hamiltonian of the polymer chain can be written
as,G'Hg[Rp]:(3/2t_)2)f’3'Pd7[ﬁRp(_7-)/a7-]2, whereb is the Kuhn Po+ Ps= Po, 7)
length of the chain. The Hamiltonian of the vesicle has been

proposed by Ou-Yang and Helfric{14], BHY[R.]

= (kI 2)$r_(u)dARH+CO?+NFR (10 dA+ADS v, [R (wondr, f drp,=0, (8)
whereH andc, are the local mean curvature and spontane- r < Vinl Rl

ous curvature of the fluid membrane, respectivelys the  and following the standard procedure of the functional mini-
bending rigidity of the membrang, can be considered as the mization for fluid membranegl3,14], we obtain the shape
tensile stress acting on the membrane, apdp,,—Pin IS  equation of the vesicle in the presence of polymers,

the pressure difference across the membrane.

Following the standard procedure of the SCHT], by AP+ &pp(r =R + 70 - V py(r =R} = 2{N + 7py(r = Ry}
introducing external fieldss, and ws, which are the self- XH + 2kV?H + k(2H + ¢)(2H? - ¢oH — 2K) = 0, (9)
consistent molecular fields conjugated to the collective den- ) ) ) )
sities p, and p,, and the Lagrangian multipliers for the where n is the unit normal vector an& is the Gaussian
incompressibility of the system, as well gdor the impen- ~ Curvature of the membrane.

S

etrability of the membrane, Eq1) can be written asg _ Compared with the gene_ral shape equ_ation of vesicles de-
= [DR,Dp:DppDwDw,D¢ D¢ e AFRnpspposopéd with the rived by Ou-Yang _and Helfrich14], extra(m_homogeneoos
functional BF defined as pressure and tensile stress terms appear |r(95the extra
pressure] {p,(r=Ry)] originates from the reduction of the
- _ _ chain conformation entropy due to the spatial confinement of
PF==npIn Qplop] = nsIn Q] +f drixpepp — 0eps the polymer chains by the impenetrable membrane. The extra
tensile stres$7p,(r=R.)] comes from the adhesion of the
— wppp+ Epp + ps— po)l + 5% dA(2H + cp)? chain segments onto the vesicle membrane, which simply
Rm reflects that if the membrane adsorbs the chain, it reduces the
tensile stress and thus the membrane tends to be extended to
+)\jg dA+ Apf dr+ 7,39 dAp, decrease the free energgnergy benefjt This result coin-
R r € Vin[Rnl Rm cides with the mean field analysis by Bickel and Marques

[15] for an impenetrable fluid membrane ornamented with
+§f dr py. (20  grafted chains. Moreover, the adhesion of polymer chains
reVin[Ryl onto the membrane also results in additional pressure
-V py(r=Ry), which also reflects that the membrane tends
to contact more polymer segments if it adsorbs polymer seg-
ments.
o To demonstrate our combined Helfrich-SCFT approach
=J/dr gy(r,Ny), where the propagatoqp(r,r)z saﬂgfles the  for exploring vesicle shapes under the effect of polymer
modified diffusion equatiortd/ d7)a(r, 7)=(b*/6)Vau(r,7)  chains, we have chosen to first investigate the system in
~wplp(r, 7), with the initial conditiongy(r=Ry(U,v),00=1  \hich only a single polymer chain is anchored to the vesicle
and gp(r # Ry(u,v),0)=0 for a polymer chain with one of ang restrict our study to a vesicle with axisymmetric shape
the ends anchored on the vesicle. Since the other end of tl’[§3] For convenience, we séias an inherent property of the
polymer is free, a different propagatay(r,7) is needed, fluid vesicle instead of determining it by applying the con-
which obeys a similar diffusion equation wi/dr multi-  straint in Eq.(7). Removing these restrictions is possible but
plied by —1 and the initial condition(r,Ny)=1. causes more computational efforts and will be presented
In SCFT one approximate§ by the extremum of the elsewhere. The numerical scheme we use is as follows. We
integrande A, Thus the free energy(2/8)In E is given by  begin with an initial guess for the vesicle shdpay, spherg
F{Rm. pp: s, wp, ws, €, L}, WhereRy, p,, ps, wp, ws, €, and{  then the self-consistent equatiai3$—~(8) are solved to obtain
are functions for whicl attains its minimum. Following Eq. p(r), in which the diffusion equations are solved using an
(2), these functions satisfy the self-consistent equati@8s  alternate direction implicit schen{d2]. The obtainedoy(r)

In Eq. (2), the partition function for the solvent molecules
Q4 wg] is defined asR{ ws]=/dr e s and the single chain
partition  function QJw,] is calculated as Qylw,]

/b + ype+ £, AR, is then i_nserted into Eq_9) for calculating the new shape_ of
7ot xps+ £, T e ARyl the vesicle under the influence pf(r). For axisymmetric
wp=) L+ xpst & T e Vi[Rul, ©) vesicles, the shape equation is solved using the algorithm of
Xpsté&, r e Voul Rl Seifertet al. [16]. These steps are repeated until the conver-
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20 25 gence conditions have been reached. In our numerics, we
(@) (®) adoptb (which is the Kuhn length of the chain and also the
161 &0 thickness of the membrapnas the length unit anki;T as the
121 151 energy unit. In_practice, the diffusion equations are solved
. 10 with Ar=0.05/N,b andAr=1
h To verify our numerical procedure, we have solved the
41 9 shape equation without anchored polymers and observed a
04 0 ) set of stationary(either stable or metastablshapes that is
- L consistent with the result of Seifeet al. [16]. For vesicles
1278 4 0 4 8 12 510 -5 0 5 10 15 with a single anchored chain, the combined Helfrich-SCFT
r J approach leads to a variety of interesting shapes, such as
12 o) dumbbells, pears, diskocytes, and stomatocytes. Several typi-
cal shapes of the vesicle and segment density distributions of
81 the anchored polymer are illustrated in Fig. 1. The shapes of
the vesicles are described hir) with h being the height of
h 4, the membrane and the coordinate along the horizontal di-
rection.
0 In Fig. 1 and the figures following, all the parameters are
dimensionless, but can be transformed back to the real physi-
4 ; ; ; cal values by the following rescalingx— xkgT, A\

< 4 0 4 B8 —\kgT/b% Ap— ApksT/b3, 7— 7ksTb, x— xkeTb®, ¢
— ¢kgT. Using a length uni{the Kuhn length of the chain
FIG. 1. Typical stationary solutions, including shapes of the@nd also the thickness of the membrabe5 nm, the coil
vesicle and segment distributions of the anchored polymer chain, t§ize of the polymer chain is calculated to bH\Ipb
the self-consistent equations. The shape of the vesicle is representedl00 nm forN,=200; thus the size of the vesicles in the
by the solid curve and the density of the polymer chain is drawn inpresent calculation can have the order of magnitude @fri
gray scale on a logarithmic scale. The radfarizonta) and height ~ (note that in all the figures the length is rescaled\flb;f,b),
axes are scaled byNgb. In all three cases, we ude=1, N,=200,  which is at the limit of optical microscopy. Our calculation
Co=0, x=0, »=0, and{=15. (8 «=5, A=-0.003465, and\p therefore suggests longer chains have to be used to facilitate
=0.000 05.(b) k=1, A=-0.000 39, and\p=0.00001.(c) k=1.67,  the optical observation of the vesicle shape changes induced
A=-0.000 36, and\p=0.000 02. by the anchored polymers. Throughout this paper, we have

75
(a) ® 1o

60 - 10>

2 o 2 FIG. 2. Pearling transition of tubular vesicles
L due to polymer anchoring. The tubular vesicle
45 - shown in (a) is obtained with parameter
=1.67, cp=0, x=0, =0, Ap=0.00001, \=

| -1.5Ap/2)?3. The pearling vesicle ifb) is with

h the same parameters, but a polymer chain with
chain lengthN,=200 anchored, ang=1.5 (for

30 clarity, the polymer segment distribution is not
i drawn and the anchoring point is indicated by an
arrow). The radial (horizonta) and height axes
are scaled bWpr. The inset depicts the pore
between the bottom pearl and its neighbor.
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chosen thec value to be - 25kzT, whereT is a physiologi- 20
cal temperature, as well as\ in the range of (a) n = 0.05, 4 =-0.0110
(10°5-103)kgT/nn?. These values ok and\ can be com- 1 0 15' 1 =-0.0108
pared to the typical bending rigidity of a bilayer of phospho- 151 T )
lipids, which was estimated to be~ 10kgT, and the surface
tension\ ~ 10 kg T/nn?, based on micropipette experiments
[17,18. The pressure differenc&p we used corresponds to
1-10 Pa, and the adsorption-desorption streng@dpre- .
sented by then term) is in the range of(-0.1-0.2kgT, 5.
which are all accessible in real experiments. h
Note that due to the disturbing of the polymer chain, a
spherical shape is not stable and thus is not observed. In fact, 0+
the disturbance of the polymer chain always results in elon-
gation of the spherical vesicles along the axis direction if the
surface area of the vesicle is fixed. In general the symmetry
of the vesicle shapes is lowered due to the anchored polymer
chain. -10 ; . . . .
More dramatic shape change occurs when a polymer 15  -10 -5 0 5 10 1¢
chain is anchored to tubular vesicles. For a membrane with r
zero spontaneous curvature, wharr-1.5Ap/2)??, the
vesicle can form an infinitely long tube with radius
(Ap/2)713 [16]. However, with the same parameters, if a 25
polymer chain is anchored to such a tubular vesicle, the (b) ——n= 0.05, 1= -0.0144
vesicle is always unstable and changes into a shape compris- —p=-0.15 A= -0.0104
ing a chain of “pearls” with radius close to that of the origi- 20
nal tube, as shown in Fig. 2. Note that each pearl is still
connected with its neighbor through a narrow pore, which is 154
depicted in the inset of Fig.(B). “Pearling” states of tubular
vesicles have been achieved experimentally either by using

-7

10

-

laser tweezergl7] or by anchoring polymerg2]. n 107
One advantage of the Helfrich-SCFT method is that not ]
only does it predict the shape of the vesicle, but it also pro- 5]

vides simultaneously the segment density distribution of the
anchored chain. Therefore, we have also investigated the

chain segment density distribution for various values of the 0+
interaction parameter between the chain segment and the
membrane». When =0, as expected, the polymer is re-
pelled from the membrane surface and thus forms a “mush- 15
room.” When <0, however, the attractive interaction be-
tween the segment and membrane could make the chain form
a “pancake” covering on the vesicle surface. Figure 3 shows
two examples of a polymer coil changing from “mushroom”
to “pancake” shape with decrease @fWe have calculated
the amount of polymer adsorption on the membrane an
found that, wheny Cha”ges fr(_)m Q.05 to —0.15, adsorption tions are horizontally moved, and the anchoring points are indicated
increases 5.3 and 4.6 times in Figga)3and 3b), respec- by arrows.

tively. This means that adsorption is indeed happening. Note

that, however, by decreasing(<0), in Fig. 3@ the mem-  dicted that the membrane will bend toward the polymer in
brane bends toward the polymer, while in Figbj3it bends  order to maximize the number of contact points with the
away from the polymer. Although counterintuitive, we be- pancake shape, while an explicit calculation for ideal chains
lieve this is reasonable because the bending rigidity  shows that the sign of the spontaneous curvature may, in
=25) used in Fig. 3 is much higher than that in all previousgeneral, depend on microscopic paramef&8. These pre-
caseqwherex<5); thus the membrane is very rigid and the dictions were all based on a polymer anchored to an infi-
shape of the vesicle is mostly determined by the membrangitely large planar membrane. Our Helfrich-SCFT calcula-
itself. Therefore, if(globa) free energy minimization re- tion for finite sized and closed vesicles shows that the local
quires the membrane bending away from the polymer, albending of the membrane induced by the anchored chain is
though the adsorption interaction favors the membrane ersubtle. It depends not only on whether the local interactions
gulfing the polymer, it cannot compete with the effect of between the polymer segments and the membrane are attrac-
bending rigidity. However, previous scaling arguments pre<ive or repulsive, but also on the global shape of the vesicle.

FIG. 3. (Color online Effect of the polymer-membrane interac-
tion parameters. The parameters used abe-1, N,=200, ¢4=0,
=0, {=1.5,Ap=0.0003,x=25. The radialhorizonta) and height
xes are scaled bwpb. For clarity, the polymer segment distribu-
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In summary, we have proposed a general approach fagmphasize that the approach is very general and can be ex-
predicting shapes of fluid vesicles with anchored polymeitended straightforwardly to the case of more complicated
chains. The central idea is to combine the Helfrich curvaturéystems, such as multiple chains, block copolymers, or semi-
elasticity theory for fluid membranes and the self-consistenfi€xible chains anchored to vesicles.

field theory for polymers, to determine stable and metastable \y/s thank Jianfeng Li for useful discussions. We acknowl-
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