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We propose a general method for predicting shapes of fluid vesicles with anchored polymers. The method
combines the Helfrich curvature elasticity theory for fluid membranes and the self-consistent field theory for
polymers, to determine stable and metastable shapes of the vesicles as well as the segment distributions of the
anchored chains. We illustrate the method by investigating the shape change of a fluid vesicle induced by a
single anchoring polymer chain. Extension to more complicated systems, such as vesicles with multiple
anchored chains, block copolymers, or semiflexible chains, is straightforward.
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Lipid bilayers that form the walls of living cells are often
“decorated” by a large number of macromolecules, such as
proteins, DNA, and polymers. For example, a polymer brush
calledglycocalyxis grafted to the plasma membrane of ani-
mal cells through coupling with the membrane-spanning pro-
teins f1g. These bilayers usually are impenetrable by most
biomacromolecules in cytoplasm. As a very much simplified
model of biological cells, polymer chains anchored to fluid
vesicles have recently attracted experimental investigation
f2,3g. Complex shape changes, such as budding, pearling,
and coiling of the vesicles, can be induced even when a very
small amount of polymer chains are anchored and/or ad-
sorbed onto the membranes. These subtle shape changes of
vesicles with anchored polymers have also drawn theoretical
attention f4–6g. Analytical calculations and Monte Carlo
simulations reveal that the anchored chains can induce local
inhomogeneities of the bending rigidity and spontaneous cur-
vature of the membranef4,5g. Adsorption of polymers an-
chored to membranes was also investigated and for strong
adsorption a decrease of the entropically induced membrane
curvature was predictedf7g. Furthermore, the anchored poly-
mers with adhesive segments were thought to act as adhesive
stickers between membranes, a mechanism that underlies the
adhesion of biomembranesf8g; however, repeller molecules
anchored to the membranes, such as polyethylene glycol lip-
ids, can induce purely repulsive interaction potentialsf9g.

Up to now, theoretical studies have accounted for the al-
tering of the spontaneous curvature and bending rigidity of
an infinitively large planar membrane. For vesicles, however,
due to the closure of the membranes, a different model for
closed vesicles with anchored polymers, which has more bio-
logical relevance, is needed. In this paper, we propose an
approach that combines the Helfrich curvature elasticity
theory for fluid membranes and the self-consistent field
theorysSCFTd for polymers to satisfy this need. The Helfrich

theory has been extensively used to explore the shape
changes of closed membranes under various conditions. It
has successfully predicted the diskocyte shape of the red
blood cellf10g. For polymer systems, SCFT is the method of
choice for numerical studies of equilibrium phases and has
yielded quantitative agreement with experimentsf11,12g.
The combined Helfrich-SCFT theory allows the simulta-
neous prediction of the shapes of vesicles with anchored
polymer chains as well as the segment distributions of these
chains.

We consider a polymer-vesicle system in solvent. We as-
sume that the vesicle membrane is infinitively thin but not
penetrable by the polymer chains that are outside of the
vesicle. The number of solvent molecules isns and that of
the polymer chains isnp with each chain ofNp segments.
The partition function of such a system can be written as
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where b=1/kBT, and eDR denotes functional integration
over configurations of the solvents, polymers, and fluid
membrane.Rs

i and Rp
i std denote the spatial positions of the

solvent i and the segmentt of the ith chain, respectively.
Rmsu,vd denotes the spatial position of the membrane and
u,v are curvilinear coordinates in the membrane surface.r
PVinfRmsu,vdg or r PVoutfRmsu,vdg denotes thatr is inside
or outside the volume enclosed by the vesicle membrane,
respectively. The firstd function ensures the incompressibil-
ity constraint andr0 is the reference density, and the second
d function guarantees that the membrane is impenetrable by
polymer chains. The density operators are defined asr̂ssrd
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teraction Hamiltonian includes interactions between the
polymer segments and solvent molecules and the membrane,
i.e., Hint=Vps+Vpm, which can be written asbVps
=xedr r̂ssrdr̂psrd and bVpm=hrdA r̂phr PAfRmsu,vdgj,
where x and h are the interaction parameters of polymer-
solvent and polymer-membrane pairs, respectively, and
AfRmsu,vdg represents the surface of the closed vesicle mem-
brane. The Hamiltonian of the polymer chain can be written
asbHp

0fRpg=s3/2b2de0
Npdtf]Rpstd /]tg2, whereb is the Kuhn

length of the chain. The Hamiltonian of the vesicle has been
proposed by Ou-Yang and Helfrichf14g, bHm

0 fRmg
=sk /2drRmsu,vddAs2H+c0d2+lrRmsu,vddA+DperPVinfRmsu,vdgdr,
whereH andc0 are the local mean curvature and spontane-
ous curvature of the fluid membrane, respectively.k is the
bending rigidity of the membrane,l can be considered as the
tensile stress acting on the membrane, andDp=pout−pin is
the pressure difference across the membrane.

Following the standard procedure of the SCFTf11g, by
introducing external fieldsvp and vs, which are the self-
consistent molecular fields conjugated to the collective den-
sities rp and rs, and the Lagrangian multipliersj for the
incompressibility of the system, as well asz for the impen-
etrability of the membrane, Eq.s1d can be written asJ
=eDRmDrsDrpDvsDvpDj Dz e−bFhRm,rs,rp,vs,vp,j,zj, with the
functionalbF defined as

bF = − np ln Qpfvpg − ns ln Qsfvsg +E drfxrsrp − vsrs

− vprp + jsrp + rs − r0dg +
k
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In Eq. s2d, the partition function for the solvent molecules
Qsfvsg is defined asQsfvsg=edr e−vs and the single chain
partition function Qpfvpg is calculated as Qpfvpg
=edr qpsr ,Npd, where the propagatorqpsr ,td satisfies the
modified diffusion equations] /]tdqpsr ,td=sb2/6d¹2qpsr ,td
−vpqpsr ,td, with the initial conditionqp(r =Rmsu,vd ,0)=1
and qp(r ÞRmsu,vd ,0)=0 for a polymer chain with one of
the ends anchored on the vesicle. Since the other end of the
polymer is free, a different propagatorqp8sr ,td is needed,
which obeys a similar diffusion equation with] /]t multi-
plied by −1 and the initial conditionqp8sr ,Npd=1.

In SCFT one approximatesJ by the extremum of the
integrande−bF. Thus the free energy −s1/bdln J is given by
FhRm,rp,rs,vp,vs,j ,zj, whereRm, rp, rs, vp, vs, j, andz
are functions for whichF attains its minimum. Following Eq.
s2d, these functions satisfy the self-consistent equationsf13g
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and following the standard procedure of the functional mini-
mization for fluid membranesf13,14g, we obtain the shape
equation of the vesicle in the presence of polymers,

hDp + zrpsr = Rmd + hn · = rpsr = Rmdj − 2hl + hrpsr = Rmdj

3H + 2k¹2H + ks2H + c0ds2H2 − c0H − 2Kd = 0, s9d

where n is the unit normal vector andK is the Gaussian
curvature of the membrane.

Compared with the general shape equation of vesicles de-
rived by Ou-Yang and Helfrichf14g, extrasinhomogeneousd
pressure and tensile stress terms appear in Eq.s9d. The extra
pressurefzrpsr =Rmdg originates from the reduction of the
chain conformation entropy due to the spatial confinement of
the polymer chains by the impenetrable membrane. The extra
tensile stressfhrpsr =Rmdg comes from the adhesion of the
chain segments onto the vesicle membrane, which simply
reflects that if the membrane adsorbs the chain, it reduces the
tensile stress and thus the membrane tends to be extended to
decrease the free energysenergy benefitd. This result coin-
cides with the mean field analysis by Bickel and Marques
f15g for an impenetrable fluid membrane ornamented with
grafted chains. Moreover, the adhesion of polymer chains
onto the membrane also results in additional pressure
hn ·=rpsr =Rmd, which also reflects that the membrane tends
to contact more polymer segments if it adsorbs polymer seg-
ments.

To demonstrate our combined Helfrich-SCFT approach
for exploring vesicle shapes under the effect of polymer
chains, we have chosen to first investigate the system in
which only a single polymer chain is anchored to the vesicle
and restrict our study to a vesicle with axisymmetric shape
f13g. For convenience, we setj as an inherent property of the
fluid vesicle instead of determining it by applying the con-
straint in Eq.s7d. Removing these restrictions is possible but
causes more computational efforts and will be presented
elsewhere. The numerical scheme we use is as follows. We
begin with an initial guess for the vesicle shapessay, sphered,
then the self-consistent equationss3d–s8d are solved to obtain
rpsrd, in which the diffusion equations are solved using an
alternate direction implicit schemef12g. The obtainedrpsrd
is then inserted into Eq.s9d for calculating the new shape of
the vesicle under the influence ofrpsrd. For axisymmetric
vesicles, the shape equation is solved using the algorithm of
Seifertet al. f16g. These steps are repeated until the conver-
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gence conditions have been reached. In our numerics, we
adoptb swhich is the Kuhn length of the chain and also the
thickness of the membraned as the length unit andkBT as the
energy unit. In practice, the diffusion equations are solved
with Dr =0.05ÎNpb andDt=1.

To verify our numerical procedure, we have solved the
shape equation without anchored polymers and observed a
set of stationaryseither stable or metastabled shapes that is
consistent with the result of Seifertet al. f16g. For vesicles
with a single anchored chain, the combined Helfrich-SCFT
approach leads to a variety of interesting shapes, such as
dumbbells, pears, diskocytes, and stomatocytes. Several typi-
cal shapes of the vesicle and segment density distributions of
the anchored polymer are illustrated in Fig. 1. The shapes of
the vesicles are described byhsrd with h being the height of
the membrane andr the coordinate along the horizontal di-
rection.

In Fig. 1 and the figures following, all the parameters are
dimensionless, but can be transformed back to the real physi-
cal values by the following rescaling:k→kkBT, l
→lkBT/b2, Dp→DpkBT/b3, h→hkBTb, x→xkBTb3, z
→zkBT. Using a length unitsthe Kuhn length of the chain
and also the thickness of the membraned b=5 nm, the coil
size of the polymer chain is calculated to beÎNpb
,100 nm forNb=200; thus the size of the vesicles in the
present calculation can have the order of magnitude of 1mm
snote that in all the figures the length is rescaled byÎNpbd,
which is at the limit of optical microscopy. Our calculation
therefore suggests longer chains have to be used to facilitate
the optical observation of the vesicle shape changes induced
by the anchored polymers. Throughout this paper, we have

FIG. 1. Typical stationary solutions, including shapes of the
vesicle and segment distributions of the anchored polymer chain, to
the self-consistent equations. The shape of the vesicle is represented
by the solid curve and the density of the polymer chain is drawn in
gray scale on a logarithmic scale. The radialshorizontald and height
axes are scaled byÎNpb. In all three cases, we useb=1, Np=200,
c0=0, x=0, h=0, and z=1.5. sad k=5, l=−0.003 465, andDp
=0.000 05.sbd k=1, l=−0.000 39, andDp=0.000 01.scd k=1.67,
l=−0.000 36, andDp=0.000 02.

FIG. 2. Pearling transition of tubular vesicles
due to polymer anchoring. The tubular vesicle
shown in sad is obtained with parametersk
=1.67, c0=0, x=0, h=0, Dp=0.000 01, l=
−1.5sDp/2d2/3. The pearling vesicle insbd is with
the same parameters, but a polymer chain with
chain lengthNp=200 anchored, andz=1.5 sfor
clarity, the polymer segment distribution is not
drawn and the anchoring point is indicated by an
arrowd. The radial shorizontald and height axes
are scaled byÎNpb. The inset depicts the pore
between the bottom pearl and its neighbor.
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chosen thek value to be 1,25kBT, whereT is a physiologi-
cal temperature, as well asl in the range of
s10−5–10−3dkBT/nm2. These values ofk andl can be com-
pared to the typical bending rigidity of a bilayer of phospho-
lipids, which was estimated to bek,10kBT, and the surface
tensionl,10−3kBT/nm2, based on micropipette experiments
f17,18g. The pressure differenceDp we used corresponds to
1–10 Pa, and the adsorption-desorption strengthsrepre-
sented by theh termd is in the range ofs−0.1–0.1dkBT,
which are all accessible in real experiments.

Note that due to the disturbing of the polymer chain, a
spherical shape is not stable and thus is not observed. In fact,
the disturbance of the polymer chain always results in elon-
gation of the spherical vesicles along the axis direction if the
surface area of the vesicle is fixed. In general the symmetry
of the vesicle shapes is lowered due to the anchored polymer
chain.

More dramatic shape change occurs when a polymer
chain is anchored to tubular vesicles. For a membrane with
zero spontaneous curvature, whenl=−1.5sDp/2d2/3, the
vesicle can form an infinitely long tube with radius
sDp/2d−1/3 f16g. However, with the same parameters, if a
polymer chain is anchored to such a tubular vesicle, the
vesicle is always unstable and changes into a shape compris-
ing a chain of “pearls” with radius close to that of the origi-
nal tube, as shown in Fig. 2. Note that each pearl is still
connected with its neighbor through a narrow pore, which is
depicted in the inset of Fig. 2sbd. “Pearling” states of tubular
vesicles have been achieved experimentally either by using
laser tweezersf17g or by anchoring polymersf2g.

One advantage of the Helfrich-SCFT method is that not
only does it predict the shape of the vesicle, but it also pro-
vides simultaneously the segment density distribution of the
anchored chain. Therefore, we have also investigated the
chain segment density distribution for various values of the
interaction parameter between the chain segment and the
membrane,h. When hù0, as expected, the polymer is re-
pelled from the membrane surface and thus forms a “mush-
room.” Whenh,0, however, the attractive interaction be-
tween the segment and membrane could make the chain form
a “pancake” covering on the vesicle surface. Figure 3 shows
two examples of a polymer coil changing from “mushroom”
to “pancake” shape with decrease ofh. We have calculated
the amount of polymer adsorption on the membrane and
found that, whenh changes from 0.05 to −0.15, adsorption
increases 5.3 and 4.6 times in Figs. 3sad and 3sbd, respec-
tively. This means that adsorption is indeed happening. Note
that, however, by decreasingh s,0d, in Fig. 3sad the mem-
brane bends toward the polymer, while in Fig. 3sbd it bends
away from the polymer. Although counterintuitive, we be-
lieve this is reasonable because the bending rigidityk s
=25d used in Fig. 3 is much higher than that in all previous
casesswherekø5d; thus the membrane is very rigid and the
shape of the vesicle is mostly determined by the membrane
itself. Therefore, if sglobald free energy minimization re-
quires the membrane bending away from the polymer, al-
though the adsorption interaction favors the membrane en-
gulfing the polymer, it cannot compete with the effect of
bending rigidity. However, previous scaling arguments pre-

dicted that the membrane will bend toward the polymer in
order to maximize the number of contact points with the
pancake shape, while an explicit calculation for ideal chains
shows that the sign of the spontaneous curvature may, in
general, depend on microscopic parametersf19g. These pre-
dictions were all based on a polymer anchored to an infi-
nitely large planar membrane. Our Helfrich-SCFT calcula-
tion for finite sized and closed vesicles shows that the local
bending of the membrane induced by the anchored chain is
subtle. It depends not only on whether the local interactions
between the polymer segments and the membrane are attrac-
tive or repulsive, but also on the global shape of the vesicle.

FIG. 3. sColor onlined Effect of the polymer-membrane interac-
tion parameterh. The parameters used areb=1, Np=200, c0=0,
x=0, z=1.5,Dp=0.0003,k=25. The radialshorizontald and height
axes are scaled byÎNpb. For clarity, the polymer segment distribu-
tions are horizontally moved, and the anchoring points are indicated
by arrows.
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In summary, we have proposed a general approach for
predicting shapes of fluid vesicles with anchored polymer
chains. The central idea is to combine the Helfrich curvature
elasticity theory for fluid membranes and the self-consistent
field theory for polymers, to determine stable and metastable
shapes of the vesicle-polymer systems as well as the segment
distributions of the anchored chains. We illustrate the appli-
cation of the method by investigating the shape change of a
fluid vesicle induced by a single anchored polymer chain. We

emphasize that the approach is very general and can be ex-
tended straightforwardly to the case of more complicated
systems, such as multiple chains, block copolymers, or semi-
flexible chains anchored to vesicles.
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